SMUG2019

I was recently invited to attend the SMUG2019 conference (SMoothie Users Group), organised by Demand Works company in New York. They asked me to present two topics: State space ARIMA for Supply Chain Forecasting, based on which I have developed a module for Smoothie a couple of years ago, Artificial Intelligence in Business, one of […]

A simple combination of univariate models

Fotios Petropoulos and I have participated last year in M4 competition. Our approach performed well, finishing as 6th in the competition. This paper in International Journal of Forecasting explains what we used in our approach and why. Here’s the abstract: This paper describes the approach that we implemented for producing the point forecasts and prediction […]

greybox 0.3.0 – what’s new

Three months have passed since the initial release of greybox on CRAN. I would not say that the package develops like crazy, but there have been some changes since May. Let’s have a look. We start by loading both greybox and smooth:

Rolling Origin First of all, ro() function now has its own class […]

International Symposium on Forecasting 2018

This year I have presented an extension of the research from ISF2017, called “Forecasting intermittent data with complex patterns”. This time we developed the model with “logistic probability”, which allows capturing complex patterns in demand occurrence part of the data. I also tried making the presentation more entertaining and easier to understand by a wider […]

“smooth” package for R. Common ground. Part IV. Exogenous variables. Advanced stuff

Previously we’ve covered the basics of exogenous variables in smooth functions. Today we will go slightly crazy and discuss automatic variables selection. But before we do that, we need to look at a Santa’s little helper function implemented in smooth. It is called xregExpander(). It is useful in cases when you think that your exogenous […]