Как измерить точность прогнозов

Два года назад я написал статью на английском языке про прогнозные ошибки и о том, как можно и как ненужно измерять точность прогнозов. Переводить на русский я её не стал из-за нехватки времени и дублирования частей статьи вот этим постом на русскоязычной версии сайта. Но прошло время, моё понимание проблемы немного изменилось, и я решил […]

useR!2019, Тулуза, Франция

Salut mes amis! Сегодня я презентовал свой пакет для R smooth на конференции useR!2019 в Тулузе, Франция. Это достаточно любопытная конференция, посвящённая решению конкретных проблем. Люди здесь скорее презентуют конкретные функции из своих пакетов, нежели модели, которые лежат в их основе (как, например, на ISF). С одной стороны, у такого формата есть свои ограничения, но […]

Пакет «smooth» для R. Прерывистый спрос. Часть 1. Введение

ОБНОВЛЕНИЕ: Начиная с версии smooth v 2.5.0, модели и соответствующие функции были изменены. Теперь вместо intermittent и iss() в пакете существуют occurrence и oes(). Пожалуйста, используйте новые функции и новые параметры. Старый функционал будет удален в следующей версии пакета. Этот статья была обновлена 25 апреля 2019 года. Одно из преимуществ функций пакета smooth заключается во […]

Пакет greybox для R

На днях я разместил в CRAN новый пакет — greybox (серый ящик). Идея названия произрастает из принципов моделирования, в соответствии с которыми все модели могут быть условно разделены на три типа: Чёрный ящик — модель, в которой неизвестны ни структура, ни параметры. Мы видим только входной и выходной сигналы Белый ящик — модель, в которой […]

Сравнение аддитивной и мультипликативной регрессий с помощью AIC в R

Один из основных принципов, которому учат студентов в курсе статистикик заключается в том, что сравнение регрессионных моделей с помощью информационных критериев возможно только в том случае, когда выходная переменная в моделях одинаковая. Например, модель с выходной переменной \(\log(y_t)\) не может быть сравнена с моделью с \(y_t\) с помощью AIC. Причина в том, что переменные имеют […]

Пакет «smooth» для R. Общие параметры. Часть 4. Экзогенные переменные. Продвинутый уровень

В прошлый раз мы рассмотрели основы по работе с экзогенными переменными в функциях пакета smooth. Сегодня мы поговорим о более продвинутых вещах. Но прежде чем перейти к ним, нам нужно поговорить о вспомогательных функциях, которые реализованы в пакете greybox и используются в smooth. Первая из них называется xregExpander() и позволяет генерировать лаговые переменные на основе […]

Пакет «smooth» для R. Общие параметры. Часть 3. Экзогенные переменные. Основы

Одно из преимуществ функций пакета smooth — это возможность использовать экзогенные переменные (регрессоры). Это потенциально может привести к росту точности прогнозов, в случае, если у вас в распоряжении есть хорошие оценки будущих значений включённых переменных. Например, в случае с ритейлом в качестве экзогенной переменной может выступать наличие акции в магазине («купите один шампунь, получите ящик […]

Пакет «smooth» для R. Общие параметры. Часть 2. Оценка параметров

Прежде чем мы приступим к обсуждению сегоднешней темы, я бы рекомендовал обратиться к статье «Элементы математической статистики, проверка гипотез» электронного учебника — нам понадобятся сегодня такие понятия, как несмещённость, эффективность и состоятельность. Здесь их лишний раз обсуждать нехочется. Кроме того, многое, что мы рассмотрим сегодня, уже описано в главах «Простые методы оценки параметров моделей» и […]

smooth v2.0.0. Что нового

Вы не поверите! Пакет smooth для R обновился до версии 2.0.0 и теперь доступен в CRAN. Такой красивый номер в версии не часто встречается, поэтому я решил немного написать о том, что же нового появилось в пакете. Во-первых, в пакете есть новая функция, ves() — Векторное Экспоненциальное Сглаживание. Эта модель позволяет оценивать несколько рядов одновременно […]

Пакет «smooth» для R. Общие параметры. Часть 1. Прогнозные интервалы

Предыдущие 6 статей мы обсуждали основные свойства функции es(). Пришло время двигаться дальше. Начиная с этой статьи мы обсудим параметры, общие для всех функций, реализованных в пакете smooth. К таким функциям относятся: es(), ssarima(), ces(), ges() и sma(). Однако, беря во внимание, что на данный момент мы обсудили только экспоненциальное сглаживанием, все примеры мы будем […]