
Trace forecast likelihood

Ivan Svetunkov1 Nikos Kourentzes1

1Lancaster Centre for Forecasting
Lancaster University

Ask Stephan Kolassa
(ASK, 2016)



Before we start

What is “trace forecast”? (Weiss and Andersen, 1984)?
Here it is:
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Figure: Trace forecast of a random model.



Introduction

There is a lot of different estimation methods.

Sometimes in practice simple heuristics is used. For example:

MSEh =
1

T − h

T−h∑
t=1

e2t+h|t , (1)

or Trace Forecast MSE:

TFMSE =
1

h

h∑
j=1

1

T − j

T−j∑
t=1

e2t+j |t , (2)

where et+j |t is a forecast error, produced from observation t.



Literature

Theory gives insights on the work of these (only for ARIMA):

1 Using 1-step ahead forecast error may lead to bias even when
model is specified correctly due to finite sample (Clements
and Hendry, 2008). Using MSEh minimises this bias.

2 If model is wrong then the usage of MSEh leads to the
convergence of parameters to “pseudo-true” values (McElroy
and Wildi, 2013).

3 Using TFMSE increases accuracy of ARIMA (Weiss and
Andersen, 1984; Weiss, 1991). Estimates are consistent and
asymptotically normal.

4 Using TFMSE reduces bias and leads to more robust
parameters estimation (Tiao and Xu (1993), Xia and Tong
(2011)).



Problems

• Standard one-step ahead cost function is derived from the
likelihood.

• Cost functions (1) and (2) do not have a proper statistical
rationale.

• Cost functions (1) and (2) work in practice, but nobody
knows exactly why.



Solution

Estimate the joint distribution of 1 to h steps ahead conditional
errors.

Yt =


yt+1

yt+2
...

yt+h

 and Y = {Y1,Y2, . . . ,YT} (3)

So we want to estimate likelihood:

L(θ,Σ|Yt) = P(Yt |θ,Σ), (4)

which for the whole sample T will be:

L(θ,Σ|Y ) =
T∏
t=1

P(Yt |θ,Σ). (5)



Solution

For the multivariate normal distribution likelihood (5) transforms
into:

L(θ,Σ|Y ) =
T∏
t=1

[
(2π)−

h
2 |Σ|−

1
2 exp

(
−1

2
Et
′Σ−1Et

)]
(6)

where Et =


et+1|t
et+2|t

...
et+h|t

 and Σ̂ =
1

T − h

T−h∑
t=1

EtE
′
t



Solution

Concentrated log-likelihood using estimated Σ̂ is much simpler:

`(θ, Σ̂|Y ) = −T

2

(
h log(2πe) + log |Σ̂|

)
(7)

So:

• Model selection can be performed using any information
criteria (for example, AIC);

• Maximisation of (7) is equivalent to minimisation of the
generalised variance (GV):

GV = |Σ̂| (8)



Solution

What is Σ?

Σ =


σ21 σ1,2 . . . σ1,h
σ1,2 σ22 . . . σ2,h

...
...

. . .
...

σ1,h σ2,h . . . σ2h

 (9)

log |Σ̂| =
h∑

j=1

log σ2j + log |R|, (10)

where R =


1 r1,2 . . . r1,h
r1,2 1 . . . r2,h

...
...

. . .
...

r1,h r2,h . . . 1

 is the correlation matrix.



Solution

Minimising GV means the decrease of log variances and increase of
correlations between some errors.
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Figure: Scatter plots before and after the minimisation of GV.



Solution

One of the options – ignore the correlation matrix and minimise
log variances using:

TLV =
h∑

j=1

log
(
σ2j
)

(11)

This is a different cost function than TFMSE (which is
proportional to “Total Variation”):

TV =
h∑

j=1

σ2j



Solution

GV and TLV have advantages over TFMSE and MSEh:

1 The variance of short-term forecast errors is not concealed by
the long-term.

2 In a way GV encompasses other cost functions mentioned
above.

3 GV can be used in the likelihood estimation.



State-space models

Using Hyndman et al. (2008) SSOE additive state-space model the
j-steps ahead variance is:

σ2j =


σ21 if j = 1

σ21

(
1 +

j−1∑
i=1

(ci ,j)
2

)
if j > 1

(12)

Substituting (12) in (11) leads to:

logGV = h log
(
σ21
)

+
h∑

j=1

log

(
1 +

j−1∑
i=1

c2i ,j

)
+ log |R| (13)

where ci ,j = w ′F j−i−1g



State-space models

Some conclusions:

1 This is shrinkage!

2 All the multi steps functions impose shrinkage on parameters;

3 But this is not LASSO style shrinkage;

4 When h→∞, model becomes deterministic;

5 TLV and GV shrink more gently, because of the change of
scale.

Parameters of ETS and ARIMA shrink.
Parameters of regression do not shrink.



State-space models

log GV can also be represented as:

logGV = h log σ21 + log |A|, (14)

where A =

a1,1 . . . a1,h
...

. . .
...

a1,h . . . ah,h

;

aj ,k =


1 +

j−1∑
i=1

c2i ,j , j = k

ck,j +

j−1∑
i=1

ci ,kci ,j , j ≤ k

; ci ,j = w ′F j−i−1g .



State-space models

The previous slide means that by minimising log GV:

1 The one step ahead variance is minimised;

2 The shrinkage is imposed on parameters;

3 The shrinkage effect is weakened (because of aj ,k 6=j);

4 So the parameters will not over shrink as h increases.



M3 Data Experiment

M3 monthly data, fixed origin, h = 18.

ETS in “smooth” package for R
(https://github.com/config-i1/smooth).

Model selection using the conventional AIC based on 1 step ahead
error.

Several estimation methods:

1 Conventional Hyndman and Khandakar (2008),

2 MSEh optimised only once (MSEh),

3 TFMSE , aka Total Variation (TV),

4 Total Logarithmic Variation (TLV),

5 Generalised Variance (GV),

https://github.com/config-i1/smooth


M3 Data Experiment

Table: Mean errors

Method MPE MAPE SMAPE MASE

Conventional -11.861 23.559 14.373 2.091
MSEh -7.540 21.566 15.597 2.479
TV -10.019 22.179 14.645 2.235
TLV -9.628 21.971 14.598 2.234
GV -9.750 23.357 15.508 2.226



M3 Data Experiment

Table: Median errors

Method MPE MAPE SMAPE MASE

Conventional 0.206 9.184 9.106 1.087
MSEh 0.382 10.025 10.148 1.177
TV 0.333 9.362 9.296 1.115
TLV 0.548 9.201 9.235 1.108
GV 0.572 9.260 9.348 1.166



Conclusions

• Trace forecast likelihood gives a statistical rationale for some
multiple steps ahead cost functions;

• Model selection can easily be done using GV;

• Maximisation of trace likelihood is equivalent to minimisation
of GV;

• Any multi-steps ahead cost function implies shrinkage
(towards deterministic function);

• Shrinkage happens naturally in trace forecast likelihood;

• In theory the proposed approach is wonderful...

• ...in practise it doesn’t work... yet!



That’s all, folks!

Thank you for your attention!

Ivan Svetunkov, Nikolaos Kourentzes

Lancaster Centre for Forecasting,
Lancaster University

i.svetunkov@lancaster.ac.uk

mailto:i.svetunkov@lancaster.ac.uk
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