Старая собака, новые трюки…

Так можно перевести название статьи, написанной мною совместно с Фотиосом Петропулосом, которая посвящёна статистической модели, лежащей в основе простого скользящего среднего. Недавно она была принята к печати журналом International Journal of Production Research. Модель, обсуждаемая в статье, уже реализована в функции sma() пакета smooth package для R.

Аннотация на английском

Simple moving average (SMA) is a well-known forecasting method. It is easy to understand and interpret and easy to use, but it does not have an appropriate length selection mechanism and does not have an underlying statistical model. In this paper we show two statistical models underlying SMA and demonstrate that the automatic selection of the optimal length of the model can easily be done using this finding. We then evaluate the proposed model on a real dataset and compare its performance with other popular simple forecasting methods. We find that SMA performs better both in terms of point forecasts and prediction intervals in cases of normal and cumulative values.

Скачать статью.
DOI.

Добавить комментарий